Using squeeze-and-excitation blocks to improve an accuracy of automatically grading knee osteoarthritis severity using convolutional neural networks

نویسندگان

چکیده

In this paper, we investigate the effect of squeeze-and-excitation blocks on improving classification quality osteoarthritis using convolutional neural networks ResNet and DenseNet families. We show that use these improves according to Kellgren-Lawrence scale by 1–3 % without a significant modifi-cation model structure. also demonstrate combining 0 1 classes into one class allows increase accuracy grading 12.74 %, losing information about disease. The best final ac-curacy attained was 84.66 when an ensemble three with DenseNet-121 architecture blocks, which significantly exceeds performance existing state-of-the-art. obtained results can be used both for prelimi-nary automatic diagnosis as auxiliary tool.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity Using Convolutional Neural Networks

This paper introduces a new approach to automatically quantify the severity of knee OA using X-ray images. Automatically quantifying knee OA severity involves two steps: first, automatically localizing the knee joints; next, classifying the localized knee joint images. We introduce a new approach to automatically detect the knee joints using a fully convolutional neural network (FCN). We train ...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Concurrent Spatial and Channel Squeeze&Excitation in Fully Convolutional Networks

Fully convolutional neural networks (F-CNNs) have set the state-of-the-art in image segmentation for a plethora of applications. Architectural innovations within F-CNNs have mainly focused on improving spatial encoding or network connectivity to aid gradient flow. In this paper, we explore an alternate direction of recalibrating the feature maps adaptively, to boost meaningful features, while s...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Optics

سال: 2022

ISSN: ['2412-6179', '0134-2452']

DOI: https://doi.org/10.18287/2412-6179-co-897